The Austin Protocol Compiler
Reference Manual
Version 1.0

Tommy M. McGuire

May 7, 2004

Abstract

This manual provides a reference for the Austin Protocol Compiler, the TAP
language, and the runtime system. It describes the basic usage of the compiler,
the fundamentals of the execution of the TAP language, the syntax and seman-
tics of the language, and the C interface provided by the runtime system and

the generated code.

Contents

1 The TAP language and the apcc compiler
1.1 Basicoperation o

1.2 Compiling, linking, and running
2 TAP language behavior

3 Details of TAP

3.1 Message syntaxo o e
3.2 Processsyntax oo e
3.3 Actionsyntax
3.4 Statement syntax Lo oo
3.0 Expression syntaxo oo

4 The C interface

4.1 Fundamental operations
4.2 The TAP engine
4.3 Process initialization L oo
4.4 Message addressingo
4.5 Message handling L.

A Reference grammar

A1 Lexical elements

B Runtime function interface
B.1 Types o o e
B.2 Variables

B.3 Functions

10
10
12

14
14
15
15
15
16

18
18

Chapter 1

The TAP language and the

apcc compiler

TAP, the language provided by the Austin Protocol Compiler, is based on
AP, a formal notation for designing network protocols created by Mohamed
G. Gouda.[l] The syntax of TAP is intended to be very similar to that of AP,
but TAP is not identical to AP. There are some syntactic and many semantic
differences.

TAP is intended to be used by designing and (if needed) formally verifying a
protocol using an abstract execution model and then translating that protocol
into C using the Austin Protocol Compiler.

The Austin Protocol Compiler is made up of two parts, a compiler and
a runtime library. The compiler is mostly written in Python[2], a high-level,
object-oriented, interpreted language. The compiler uses a parsing toolkit writ-
ten in C that interfaces Python with a parser built using the Bison[3] parser
generator and the Flex scanner generator[4]. The runtime library is written in
C.

For information on getting started and suggestions on using the Austin Pro-
tocol Compiler, see The Austin Protocol Compiler Tutorial.'

For background information about TAP and the abstract and concrete ex-
ecution models, as well as a general overview of the APC system, see Correct

Implementation of Network Protocols.[5]

n production.

1.1 Basic operation

The TAP language is not intended to be a complete systems programming
language. It relies on C to provide basic input/output and other services not
related to network protocols. In particular, function calls (page 12) are passed
on untranslated to the generated C code, allowing the use of any C library
facility.

What TAP provides is the infrastructure for network protocols—sending and

receiving messages, basic calculations and protocol logic, and timeout handling.

1.2 Compiling, linking, and running

“

To compile an TAP process specification (from a file ending in “.ap”.), run the

command
apcc file.ap

This command will produce “file.c” and “file.h”. Using the functions described
in section 4, the C interface, create a file containing the C main function which
includes file.h. Compile file.c and any other files needed by the application and
link with the TAP runtime libarary, libAPC.a.

Chapter 2

TAP language behavior

Each TAP program consists of any number of message definitions (section 3.1)
and one or more TAP process definitions (section 3.2).! The message specifica-
tions describe the fields and on-the-wire format of any messages sent or received
in the protocol. The process specification describes the state of the protocol pro-
cess (in the form of variables) and the actions taken by the process in response
to its local state, messages it receives, or timeouts.

In execution, a process begins by checking its local actions, as described
below, and then waiting for either a message to be received or a timeout to
occur. If a message is received, the message is tested against the process’s
receive actions—if a receive action matches the message, the statements of the
corresponding action are executed and if no action matches the message, it
is discarded. If a timeout occurs, the statements of the timeout action are
executed. In either case, the local actions are again checked, and then the
process waits again.

Local actions (page 10) have guards that are predicates referencing only
local variables of the process. During execution, the guards of the local actions
are evaluated, and if a guard evaluates to true, the statements associated with
that action are executed. This process is repeated until all of the guards of
local actions have evaluated to false. At that point, the process cannot change
state again without outside events and so the process waits for either incoming
messages or timeouts.

Receive actions (page 10) have guards that are rcv expressions. During

Do not confuse this process with an operating system process. The TAP process is a
translation of the AP process formalism and not necessarily related to an operating system
process.

execution, when a message has been received, each receive guard is evaluated
against it until one of them returns true—a receive guard is evaluated by at-
tempting to parse the message mentioned in the receive guard and succeeds if
the constant fields in the message parse to their constant values. (For more in-
formation, see sections 3.1 on messages, 3.3 on actions, and 4 on the C interface,
below.)

Timeout actions (page 10) have guards that are timeout declarations—these
provide only a name for the action. Timeout actions are invoked by act state-
ments. An act statement specifys a timeout action name and a delay. Sometime
after the delay has expired (after the execution of an act statement), the state-
ments of the timeout action are executed.

When a statement “act A in 50000” is executed, it sets a time variable
associated with the action named A to 50000. If the process immediately begins
waiting and no other events occur, A will be executed after a delay of at least
50000 ms. If another act statement is executed in the mean time, the new delay
value will replace the 50000 ms.

For more information about TAP’s conceptual, abstract, behavior and imple-
mented, concrete behavior, see Correct Implementation of Network Protocols[5],
which should be available from the APC web page.

Chapter 3

Details of TAP

The discussion of the complete of the TAP language follows the structure of the
TAP grammar. The grammar is described using the Extended Backus-Naur

Format, with the following conventions:

e {...} indicates zero or more copies of the contained elements.

[...] indicates zero or one copy of the contained elements; i.e. the contents

are optional.

e (...]...) indicates a choice between the contained elements.

Literal text is presented in quotation marks.
e Non-literal token elements are in italics. There are three of these:

— A string is a quote-delimited string of characters which does not span
lines. Internal quotes and newlines can be escaped by a backslash.
These strings cannot be manipulated in TAP, but can serve as argu-

ments to functions as well as to directives as described later.

— A number is one or more decimal digits, indicating a non-negative

number.

— An id is an identifier, made up of a letter followed by any number of

letters or numbers.
Parsing of each source file begins with the start symbol:

start ::= elements

elements ::= {element}

element ::= “import” string
| “include” string
| message

| process

The source file given to the compiler consists of a sequence of elements. Each
element is either an import directive, an include directive, a message definition,
or a process definition.

The import directive looks for the file named in the string. The contents of
this file are read and processed by the compiler before any subsequent elements
in the current source file.

The include directive inserts a C include directive in the output file, calling
for the file named by the string. These included files form part of the interface
between the APC-generated C module and external C code.

3.1 Message syntax

message ::= m-header m-body

m-header ::= [“external”’] “message” m-name [m-functs]
m-name = id

m-functs ::== “(” m-in “,” m-out “)”

m-in = id

m-out 1= id

m-body ::= “begin” fields “end”
fields ::= {field “,”} field

Fach message definition consists of a header and a body. The message
header primarily provides a name for the message. The body of the message is
a sequence of fields, separated by commas. The message definition is used by

the compiler to produce:
1. A C structure with records for each field in the message.

2. Parsing and marshalling functions, which interpret and recognize received
messages and convert a message structure to a sequence of bytes for trans-

mission, respectively.

Optionally, the message can be marked as external, in which case the com-
piler does not generate the C functions for marshalling and parsing the message.

This allows the programmer to provide such functions, in order to handle more

complex messages than those that can be described by TAP. Also optionally,
two functions can be identified which process the message immediately after
the fields in the message have been parsed (m-in) and immediately before the
message is sent (m-out). These functions receive the message buffer as well as
the structure describing the fields of the message, allowing them to compute a

checksum for the message, for example.

field ::= f-name “” f-type [“=" f-value |
f-name ::= id
f-value ::= expression

Each field definition consists of a field-name, a field-type, and optionally,
a field-value. If the field-value is present, the field is considered constant; the
field is automatically set to that value before the message is sent and received
messages are checked to ensure the field contains the proper value as part of the
process of recognizing messages. In these expressions, the only allowable values

are constants and the names of previous fields.

f-type ::= f-size (“bits” | “bytes”)

f-size ::= expression

A field-type describes the size and type of the contents of the field. The
expression describing the size can contain literal values or the names of previous
fields in the message. The type of the field is implied by the use of bits or bytes
to describe the field.

e A bit field contains an unsigned integer value. The size expression de-
scribes the size of the field in bits; it must not be larger than 32 bits.

e A byte field contains a sequence of data bytes. The size expression de-
scribes the size of the field in 8-bit bytes. For a received message, the value
of the record for the field in the structure generated by the compiler will
be a pointer to the data in the original message buffer. When building a
message to be sent, the value of the record should be set to a pointer to a

sequence of bytes which will remain valid until the message is sent.

Each message has an additional field, named size, which indicates the overall
size of the message in bytes. When receiving a message terminating with an

arbitrary-length data field, the size field (minus the size of any previous fields)

For grammatical correctness, “bit” is allowed as a synonym for “bits” and likewise,
“byte” for “bytes”.

provides the length of the final field. When sending such a message, assigning to
the size field allows the message marshalling functions to copy the appropriate
number of bytes from the array pointed to by the data field.

3.2 Process syntax

process ::= p-header p-body

p-header ::= “process” p-name [constants| [variables]
p-name = id

constants ::= “const” declarations

variables ::= “var” declarations

declarations ::= {declaration “;”} declaration

p-body ::= “begin” actions “end”

Fach process definition also consists of a header and a body. The process
header provides a name for the process as well as the optional declarations for

the process’s constants and variables. The process’s body contains a sequence

of actions.
declaration ::= ids “” type [“=" initial-value]
ids ©:= {id “} id
type ::= “integer”
| number “..” number
| “boolean”
| “address”
| “array” “[” array-size “|” “of” type
array-size ::= number
initial-value ::= (number | “true” | “false”)

In each declaration, a sequence of identifiers which name constants or vari-
ables are associated with a type and optionally an initial value. The basic types
allowed by TAP are 32-bit integers, booleans, and addresses. The integer type
can be specified as either a general integer or as a range of allowed values.

The initial values for variables or constants must match the type of the
variable or constant; the value of an integer is a number, and the value of a
boolean is either true or false. Addresses may not be given an initial value in
TAP. (The initial value of an address can be given via the C interface while

initializing the APC runtime system.)

The only complex type supported by TAP is the array, with any number of
dimensions. The allowed indices of each array dimension is given by the array-
size value; indices range from 0 to the array-size—1. If an initial value is given

for an array, each element of the array is set to the value.

3.3 Action syntax

actions ::= {action “[]”} action

action ::= guard “->” statements

guard ::= (local-guard | receive-guard | timeout-guard)
local-guard ::= expression

receive-guard ::= “rcv” m-name “from” address
address ::= id

timeout-guard ::= “timeout” t-name

t-name ::= id

In a TAP process, actions are separated by a box, written as two square
brackets: []. Each action consists of a guard and a sequence of statements.
There are three forms of guards: local, receive, and timeout.

Local guards are made up of a predicate, a boolean expression. The action
is enabled when the guard evaluates to true.

Receive guards specify a message accepted by the action and an address. The
guard may be enabled if and only if the received message matches the message
specified by the receive guard. If the address is a constant, then the action will
only be enabled if the message is from the process identified by the address. If
the address is a variable, then the action will be enabled no matter where the
message is from and the address will be set to the source of the message.

Timeout actions provide a name, t-name, for the action for use with the ac-

tivation statement; the behavior of such actions is described in the next chapter.

3.4 Statement syntax

Wy

statements ::= {statement “;”} statement
statement ::= “skip” | function-call | assignment | send

| conditional | loop | activate

In any sequence of statements, the individual statements are separated by

semicolons. The two fundamental statements are skip, which does nothing,

10

and a function call, which invokes a C function and is more fully described on

page 12.
assignment ::= left-sides “:=" expressions
left-sides ::= {left-side “,”} left-side
left-side ::= (id | field-reference | array-reference)
expressions ::= {expression “,”} expression

TAP assignment statements allow multiple values to be assigned simultane-
ously; in the code generated by the APC compiler, each expression is evaluated
independently and stored in a temporary location. Subsequently, the values are
assigned to the left-hand-side locations. Locations which can be assigned values

are either variables, message fields, or array elements.
send ::= “send” m-name “to” address

A fundamental operation in TAP is sending a message, identified by m-name,
to a process, identified by the address. Any necessary fields in the message

should be set before executing the send statement.

conditional ::= “if” guarded-statements “fi”
guarded-statements ::= {guarded-statement “[]”} guarded-statement
guarded-statement ::= expression “->" statements

TAP provides a conditional statement with guarded branches separated by
the box. Each branch consists of a boolean expression guarding a sequence of
statements. In execution, one branch with a true-valued expression is chosen
and executed. If no branches are enabled, execution continues with the next
statement after the conditional.

loop ::= “do” expression “->" statements “od”

The iteration statement in TAP is made up of a single guarded statement,
which provides a sequence of statements which are executed repeatedly as long

as the expression evaluates to true.

activate ::= “act” t-name “in” delay

delay ::= expression

In order to handle message loss, TAP has an additional action guard and an
additional statement:

11

e The timeout guard, timeout ¢, provides a name, ¢, for the action. This

name is used by the activation statement.

e The activation statement, act ¢ in d, provides a delay, d, between the
activation statement being executed and the timeout action ¢ becoming
enabled. For the request/reply protocol in this abstract model, the delay
is essentially arbitrary—any non-zero delay will have the same behavior.
However, in a protocol with multiple timeout actions or multiple delays,

the delay values will describe the relative behavior of the timeouts.

Every timeout guard has a time variable associated with it, which either is
null or has a numeric delay. Initially, the value of every time variable is null.
The execution of an activation statement with a timeout guard name t sets the
value of the time variable associated with the timeout guard ¢ to the delay given

in the activation statement.

3.5 Expression syntax

In order to simplify the description of the TAP expression, the grammar rule is
broken into a number of sub-rules below. The expression rule is the combination

of all of the individual sub-rules.
expression ::= (id | number | “true” | “false” | string)

The fundamental expressions in TAP are variable names, numbers, true and

false, and strings (which may only be used as arguments to function calls).

expression ::= field-reference
| array-reference

| function-call

field-reference ::= m-name “.” (f-name | “size”)
array-reference ::= (array-reference | id) “[” expression “]”
function-call ::= function-name “(” [expressions | “)”
function-name ::= id

Further expressions are field references, array references, and function calls.
Field references are described by a message name and either a field within the
message or the special field, “size”, which contains the overall size of the message
in bytes.

Array references follow the traditional syntax, with a numeric expressions
describing the element within the array.

12

A function call identifies a C function by name and executes it with the
arguments given by the expressions. The C type of the return value of the

function should be one of:
e void, for functions called as statements,
e unsigned long, for integer values, or

e unsigned char *, for an assignment to a message’s data field.

expression ::= “(” expression “)”
| expression binary-operator expression
| unary-operator expression
binary_operator e LL:77 | LL>77 | LL<77 “<:’7 ‘ “>:77 ‘ ((<>77
| 44‘77 | 44&77 ‘ cc_l_w | “” | Wk ‘ cc/w
unary-operator = “77 | “”
The next group of general expressions include the normal binary and unary
operators. The binary operators are equality, inequality, boolean operators, and
arithmetic operators. Unary operators are boolean and arithmetic negation.

5 “:7’ “>7’ “>:77 “<7’ LL<:7’ “<>”
4 “&’7 “|”
3 “+77 “_7’
) Wk ca/n
W= w”»
1 - (unary)

Figure 3.1: TAP operator precedence, from lowest to highest.

These operators have the precedence described in Figure 3.1.
expression ::= “size”

The final form of expression, a bare reference to a size message field, is only
valid in an expression that is part of a message definition. The value of the

“size” expression is the overall size of the message in bytes.

13

Chapter 4

The C interface

The Austin Protocol Compiler is intended to be used similarly to the Lex and
Yacc compiler construction tools—to generate code that will be embedded in
another program. The output of the compiler is C source code that must be

linked with other C functions in order to create a working program.

4.1 Fundamental operations

The C code which uses the output of the compiler must do five things:
1. Initalize the TAP runtime engine.
2. Initialize each process.
3. Add each process to the runtime engine.
4. Set any constant (or variable) addresses needed by the processes.
5. Invoke the TAP runtime engine.

Additionally, the external code can provide functions to assist in encoding
and decoding messages, or to replace the message parsing and writing entirely,
if the message handling provided by the compiler is not sufficient.

For all of the functions, if an error occurs (the exact notification method for
errors is described below with the individual functions), the variable APC_error

is set to a character string describing the error.

14

4.2 The TAP engine

The first and last steps involve direct interaction with the TAP runtime engine.

The current runtime library provides support for protocols sending and re-
ceiving UDP messages. Initalizing the TAP engine is handled by the function
call

int UDP_initalize_engine (int port)

This function returns true in case of error. The port is a UDP port number, at
which the engine will listen for incoming messages.

Invoking the engine is handled by the function call
int APC_engine ()

This call does not return until the protocol engine has either failed or terminated.

Termination is indicated by a false return value.

4.3 Process initialization

Once the runtime engine is initialized, it is necessary to initialize the process that
the engine will be executing. This initialization is handled by code generated
by the compiler, but a special function must be called. This function has the

form

int process_process (char *name, process_state_t *state,
process_process_t *process)

where the “process” suffix of the function name is replaced by the process name
specified in the TAP code. For example, if a process v is specified in TAP, the
function will be called process_v.

A C declaration is provided in the file.h generated by the compiler. This
function takes no arguments, and returns true in the case of an error or otherwise

false.

4.4 Message addressing

In the code generated by the compiler, a variable of type address will be assigned
a value by the receive action when a message arrives. This allows the process
to respond to messages coming from any source, including those which are not

previously known. On the other hand, constants of type address are treated as

15

parts of the tests for receive action guards—if the source address of the message
does not match the constant address, the receive action is not enabled. For
constant addresses, as well as for variable addresses which are used to send
messages before any are received, an initial value must be provided.

Since the value of an address depends on the communication methods un-
derlying the TAP runtime system, these values are not handled by the TAP lan-
guage or compiler. Instead, addresses are manipulated by the identifier provided
in the TAP source, which is referenced as a C character string. The C code which
uses the functions produced by the compiler should use the APC_set_address

function to assign an address’s initial value.

int APC_set_address (APC_process_t process, char *name,
APC_address_type_t type, char *address)

For generality here, as well, the address is also treated as a C character

string. For UDP addresses, the address string should be in the form
host-name:port-number

where the host name is optional and defaults to the local host and the port is
the UDP port number on the specified host. The name given is the identifier
used in the TAP program to send and receive messages.

The APC_set_address function returns true and sets APC_error in case of an

error. It returns false otherwise.

4.5 Message handling

By default, based on the message definitions provided to the compiler, the code
generated by the compiler includes functions for marshalling and unmarshalling
messages to and from the network format. These functions, called a writer and
a reader respectively, move the data of the message between the C structure
represtenting the message fields in the generated code and a character array
buffer used to send and receive messages.

A message definition can optionally identify two C functions to be called
by the reader and writer, respectively, in order to perform any processing that

requires the actual message buffer.

int in_funct (unsigned char *in, int in_length, message *msg)

int out_funct (unsigned char *out, int out_length, message *msg)

16

(The actual functions should have “message” replaced by the name of the mes-
sage. The structure has a type definition allowing the dst and src pointers to
reference the structure to be read into or sent from.)

The function in_funct will be called after the fields of the message have been
parsed from the buffer, but before the statements associated with the receive
action are executed. If it returns 0, the statements will not be executed, just
as if the values in the message did not match the constant fields in the message
definition.

The out_funct will be called after the fields of the message have been written
to the buffer, but before the message is sent. If it returns 0, the message will
not be sent.

For more information, see section 3.1.

For messages marked as external, the compiler does not generate the reader
and writer functions. The user is expected to provide the functions, matching
the following declarations:

int read_message (unsigned char *in, int in_len, message *dst)

int write_message (message *src, unsigned char *out, int *out_len)

The reader function should initialize the structure pointed to by dst and then
read the information from the incoming buffer in, which has a length specified
by in_len bytes. If the buffer contains a correct message, the function should
return true. Otherwise, it should return false.

The writer function should initialize the outgoing buffer out, which has
out_len bytes, and then write the fields specified by the structure pointed to by
src to the buffer. It should return false in case of error and true otherwise.

The fields of the message can be referenced in the structure by the same
names as given in the TAP message definition.

17

Appendix A

Reference grammar

This grammar is generated by y2l, the Yacc to ITEX utility by Kris Van Hees,
from the Bison grammar used by the compiler. y2l is included in the source
distribution’s doc directory to make rebuilding this document easier. y2l is
copyright (© 1994-2000 by Kris Van Hees, Belgium.

The conventions used in the grammar are:
e {...} indicates zero or more copies of the contained elements.
e [...] indicates zero or one copies of the contained elements.

e (...]...) indicates a choice between the contained elements.

Literal text is between quotation marks.

e The [] box is the two characters “[1”.

A.1 Lexical elements

The elements unspecified by the grammar are
e ID A letter, followed by any number of letters or numbers.

e STRING A quote-delimited string which does not span lines. Internal
quotes and newlines can be escaped by a backslash, however. (Strings are
not capable of being manipulated in TAP, but can be used as arguments

to C functions.)

e NUMBER One or more decimal digits.

18

start
toplevel
elements

element

message

external
messagebody
fields

field
fieldtype

process

constants
variables
declarations
declaration

const_value

ids
type

actions
action

expression

toplevel

elements

{ element }
“include” STRING
message

process

external “message” ID (messagebody | “(” ID

“” ID “)” messagebody)

[“external” |

“begin” fields “end”

{ field “,” } field

ID “” fieldtype [“=" expression |
expression (“bit(s?)” | “byte(s?)”)
“process” ID constants variables “begin”
actions “end”

[“const” declarations |

[“var” declarations |

18}

{ declaration “;” } declaration
ids “” type [“=" const_value |
NUMBER

“true”

“false”

{ID % } ID

“integer”

“boolean”

NUMBER “..” NUMBER
“address”

“array” “” NUMBER “|” “of” type

{ action “]” } action

(expression | “rev” ID “from” ID | “timeout”

ID) “—>” statements
“(” expression “)”

expression “=" expression
expression “>” expression
expression “<” expression
expression “>=" expression
expression “<=" expression
expression “<>" expression
44‘77

expression expression

19

fieldreference
arrayreference
functioncall
statements

statement

leftsides
leftside

expressions
guardedstatements

guardedstatement

expression “&” expression
expression “+” expression

expression “—” expression

expression “x” expression

expression “/” expression

“

7

expression

“—7 expression

fieldreference

arrayreference

functioncall

D

NUMBER

STRING

“true”

“false”

“size”

ID “” (ID | “size”)

(arrayreference | ID) “[” expression
ID “(” (expressions “)” | “)”)

Wy

{ statement “;” } statement

W]

“skip”

leftsides “:=" expressions
“send” ID “to” expression
“if” guardedstatements “fi”

“

“do” expression “—>" statements “od”
“act” ID “in” expression

functioncall

{ leftside “,” } leftside

D

fieldreference

arrayreference

{ expression “,” } expression

{ guardedstatement “|” } guardedstatement

“

expression “—>” statements

20

Appendix B

Runtime function interface

B.1 Types

o APC_address_t

C type representing an abstract address.

e APC_address_type_t

C enumeration used to select the type of an address: either APC_local_address
(for an address being set to a process running within the same engine), or
APC_lowlevel_address (for a low-level, remote address; currently a UDP

address/port number pair).

e APC_process_t

Generic C type containing process information. The specific sub-types of
this type are created from the TAP process definition by the compiler.
Contains references to the process’s state records, action and timeout

records, local message buffer, and other bookkeeping information.

® process_process_t

Specific sub-type of APC_process_t that is generated by the compiler; the
process prefix is replaced by the name of the process. Each individual
value of this type should be set up by the corresponding process_process

function.

o APC_state_t

Generic C type describing the state information. Like the APC_process_t,
specific sub-types are created by the compiler.

21

e process_state_t
The C data structure representing the state of a process; contains records
for the variables and constants declared in the process; it is generated by
the compiler.

e message

A C data structure containing information about a message, used in the
code generated by the compiler. The steps of parsing a message include
setting up a message structure; the steps of sending a message include
filling out a buffer with the information from a message structure. The
structure has records for each field of the message as well as a field for the

overall size of the message.

B.2 Variables

e char * APC_error

A C string describing the most recent error condition. Normally, this

variable is null.

B.3 Functions

e int int APC_add_process (APC_process_t process)
Function called by generated code to inform the runtime engine about a
newly-initialized process.

e int int APC_set_address (APC_process_t process, char *name, APC_address_type_t type,
char *address)

Set an address named name in process to a local or low-level address
(based on type) based on address . For a local address, address is the
name of the process; for a low-level, UDP, address, the format of the string
is “host-name:port-number”. Other low-level formats may vary.

e int int APC_engine ()

Execute the APC runtime engine, running any configured processes.

e int int UDP_initialize_engine (int port)

Set up a runtime engine to use UDP low-level message passing and to

listen on UDP port port .

22

e int int process_process (char *name, process_state_t *state, process_process_t *pro-
cess)

Configure the process tag structure process , assigning it name within the

engine, setting up its local state .

e int int read_message (unsigned char *in, int in_len, message *dst)

int int write_message (message *src, unsigned char *out, int *out_len)

If message is marked as external, these two functions must be provided
by the programmer; the first parses the message from the buffer in; the

second writes the message to the buffer out.

e int int APC_address_equal (APC_address_t addressl, APC_address_t address2)
int int APC_address_copy (APC_address_t *address1, APC_address_t address2)

This function and the next are part of the address handling system used
internally by the runtime engine. However, if it is necessary for C code to

manipulate addresses, these can be used to control the reference counts.

23

Bibliography

[1] Mohamed G. Gouda. Elements of Network Protocol Design. John Wiley &
Sons, 1998.

[2] Python language website. http://www.python.org.

[3] The GNU Project. Bison, April 2004.
http://www.gnu.org/software/bison/bison.html.

[4] Vern Paxson, et al. Flex, April 2004.
http://www.gnu.org/directory/text/wordproc/flex.html.

[6] Tommy M. McGuire. Correct Implementation of Network Protocols. PhD
thesis, The University of Texas at Austin, May 2004. Available from the
APC home page.

24

http://www.python.org
http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/directory/text/wordproc/flex.html

Index

act statement, 5
action, 10

body, 10

guard, 10
action guard

local, 10

receive, 10

timeout, 5, 10, 12
actions

local, 4

receive, 4

timeout, 5
address, 15
address, 22
APC_add_process, 22
APC_address_copy, 23
APC_address_equal, 23
APC_address_t, 21
APC_address_type_t, 21
APC_engine, 15, 22
APC_error, 14, 16, 22
APC_local_address, 21
APC_lowlevel address, 21
APC_process_t, 21
APC_set_address, 16, 22
APC_state_t, 21
apcc

running, 3

array data type, 10

Austin Protocol Compiler Tutorial,

2

Bison, 2

C data structure

APC_address_t, 21
APC_address_type_t, 21
APC_process_t, 21
APC_state_t, 21
message, 7
message, 22
process_process_t, 21
process_state_t, 22
unsigned char *, 13
unsigned long, 13
void, 13

C functions, 7, 8, 11

APC_add_process, 22
APC_address_copy, 23
APC_address_equal, 23
APC_engine, 15, 22
APC_set_address, 16, 22
in_funct, 16, 17
out_funct, 16, 17
process_process, 15, 21, 23
process_v, 15
read_message, 17, 23
UDP_initalize_engine, 15
UDP_initialize_engine, 22
write_message, 17, 23

C variables

address, 22
APC_error, 14, 16, 22

APC_local_address, 21
APC_lowlevel _address, 21
in_len, 17
name, 22, 23
out_len, 17
port, 22
process, 22, 23
state, 23
type, 22
C, programming language, 2, 3, 9,
14
checksum, 8
constant, 9
Correct Implementation of Network
Protocols, 2, 5

data types

array, 10
data types, TAP, 9
directives

import, 7

errors, runtime, 14
expression, 12
array reference, 12
field reference, 12
function call, 12
message size, 13
operator precedence, 13
operators, 13
string, 12
variables, constants, 12

external message, 7

field
data, 8
integer, 8
message, 7, 8

message size, 8

26

size expression, 8
Flex, 2

Gouda, Mohamed G., 2

grammar, 18

D, 18
NUMBER, 18
STRING, 18

grammar, TAP, 6

1D, 18

identifier, in TAP, 6
import directive, 7
in_funct, 16, 17
in_len, 17

include directive, 7

lex, 14
libAPC.a, 3
local action, 4

local action guard, 10

message, 4, 7, 16
buffer functions, 16
external, 7, 17
field, 7, 8, 17

optional pre- and post-functions,

8
size, 8, 13
message, 22

name, 22, 23
NUMBER, 18
number, in TAP, 6

out_funct, 16, 17
out_len, 17

port, 22
port, UDP, 15
process, 4, 9

process, 22, 23
process_process, 15, 21, 23
process_process_t, 21
process _state_t, 22
process_v, 15

Python, 2

read_message, 17, 23
receive action, 4
receive action guard, 10
runtime errors, 14

runtime library, 3

state, 23

statement, 10
activation, 5, 12
assignment, 11
conditional, 11
function call, 11
iteration, 11
send, 11
skip, 10

statements
act, 5

STRING, 18

string, in TAP, 6

TAP, 2
execution, 4
program, 4, 14
time variable, 12
Timed Abstract Protocols, 2
timeout
delay, 12
TAP, 11
timeout action guard, 5, 10, 12
timeout actions, 5
type, 22

UDP port, 15, 16

27

UDP._initalize_engine, 15
UDP_initialize_engine, 22

variable, 9
time, 12

write_message, 17, 23

yacc, 14

	The TAP language and the apcc compiler
	Basic operation
	Compiling, linking, and running

	TAP language behavior
	Details of TAP
	Message syntax
	Process syntax
	Action syntax
	Statement syntax
	Expression syntax

	The C interface
	Fundamental operations
	The TAP engine
	Process initialization
	Message addressing
	Message handling

	Reference grammar
	Lexical elements

	Runtime function interface
	Types
	Variables
	Functions

